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Summary 

The wall-jet problem is considered with, in turn, the effects of blowing and suction through the wall and the wall 
moving. In both cases it is assumed that the effect has the appropriate power-law variation so as to maintain the 
similarity form. It is shown that the resulting ordinary differential equation has no acceptable solution satisfying 
the required boundary conditions. The wall jet problem in which the original momentum condition is retained, 
but allowing for both transpiration velocity and the wall velocity is derived and it is shown that this implies that 
a solution is possible only for suction. A solution to this problem is then obtained for the appropriate power-law 
variations to keep the similarity form. 

1. Introduction 

The plane wall-jet solution of  the boundary- layer  equations was given by Glauert  [1,2], the 
problem arising when a jet of fluid is forced along a wall surrounded by fluid of the same 
type and otherwise at rest. Glauert  [1], showed that the boundary- layer  equations could be 
reduced by  a similarity t ransformation and was able to give a closed-form solution of the 
resulting ordinary differential equation. The effects of compressibili ty on the wall jet were 
treated later by Riley [3]. 

Here we consider again the wall-jet problem and allow, in turn, for the effects of  
blowing or suction through the wall, and the wall moving. In both cases we assume that 
the effect has the appropriate  power-law variation in x (x is non-dimensional  distance 
along the wall) for the similarity form, given in [1], to be preserved, For  both of the above 
cases we show that the modified similarity problems have no solution. 

For  the two problems ment ioned above the m o m e n t u m  condit ion which drives Glauert ' s  
original wall-jet solution has to be relaxed. We then go on to consider the situation in 
which this condit ion is retained but  allow as well for the effects of  t(anspiration and the 
wall moving. We show that these two effects are now connected through an integral 
condition, which implies that a solution is possible only for suction, not for blowing. We 
then obtain the corresponding similarity solution and describe its properties for large 
suction velocities. 

2. Transpiration and moving-wall cases 

Consider first the case of  suction or blowing through the wall. The t ransformat ion given in 
[1] requires a transpiration velocity v w ( x ) = -  lotx -3/4 t o  maintain similarity. The 
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resulting ordinary differential equation is then, with ~ = xl/af(,1), rl =y / x  3/4 where y 
measures distance normal to the wall and x along it, 

f , ,  + ¼if,, + ½f,2 = 0 (1) 

with boundary conditions 

f ( 0 ) = a ,  f ' ( 0 ) = 0 ,  f ' ~ 0  as 71--*oo, (2) 

where a prime denotes differentiation with respect to 7/. 
We now show that the only solution of equation (1) that satisfies (2) is the trivial 

solution f =  a for any non-zero a. To do this, first put q~ = f -  et (so q~(0) = 0), and then 
multiply the resulting equation by @. This gives 

_ _ o  _ + + _ ¼ ,,2 = o .  
d~ 

(3) 

Then, by integrating equation (3) with respect to 71 from , /=  0 to o0 and using the 
conditions at ~/= 0 and as ~ ---, oo, we have 

f 0 ~  '2 dn = 0, (4) 

from which it follows that ff ~ 0, so the only solution of (1) and (2) is the trivial solution 
f -  a. The non-similar problem of the wall jet with constant suction through the wall has 
been discussed by Elliott and Watson [4], who showed that a weak singularity developed 
at a finite value of x and were able to deduce the nature of this singularity. 

Next consider the effect of a moving wall. To maintain the similarity form we need a 
wall velocity Uw(X) of the form Uw(x)=flx -1/2, and, with this wall velocity, the 
boundary-layer equations again reduce to (1) but now with boundary conditions 

f ( 0 ) = 0 ,  f ' ( 0 ) = f l ,  f ' ~ 0  as ~ .  (5) 

In this case also, we can show that equation (1) has no solution which satisfies (5). On 
multiplying equation (1) by f and integrating once we find 

f f , ,_  ½f, + ~f2f,= C (6) 

where C is a constant. The boundary conditions on 71 = 0 imply that C = - ½f12, whereas 
the boundary conditions as ~ ~ oo require C = 0. These are incompatible for fl 4: 0. 
Equation (6) with boundary conditions (5) is a particular example of a class of equations 
discussed by Merkin [5] and Banks [6]. 

3. Retaining the momentum condition 

The (non-dimensional) momentum equation governing the flow in the boundary layer is 

au 0u 02u 
u-o--~x + V-~y = 0y2 '  (7) 
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which, together with the continuity equation, has to be solved subject to the boundary 
conditions 

v = v w ( x ) ,  u = U w ( X )  on y = 0 ,  u ~ 0  as y ~ o o .  (8) 

On integrating equation (7) and using the continuity equation, we obtain the condition 

d M  1 2 fo ~ d y  (9)  dx  = ~ Uw + vw U2 

where 

) M =  f0 u u 2 d y  dy .  

The two previous cases discussed above have either U~ = 0 or Vw = 0, which through (9) 
gives a connection between M and either v w or U~. If we now insist on retaining the 
momentum condition as Glauert did in his original problem, i.e. taking M to be a 
constant (in fact we can take M = 1 without loss in generality by defining the non-dimen- 
sional variables suitably), we have the condition 

O0 

½Uw2 + V w f  0 U2 d y = 0  (10) 

connecting vw and Uw. From (10) it is easy to see that the only possibility is to have 
Vw < 0, i.e. we can allow only suction through the wall. 

If we now take the forms for Vw and Uw as required for a similarity solution (i.e. vw = 
- ~otx -3/4 and Uw = fix -1/2) we then have to solve equation (1) subject to 

f ( O ) = a ,  f ' ( O ) = f l ,  f ' ~ O  as ~ o o  (11) 

and the momentum condition (taking M = 1) 

foO°(f - a ) f  '2 dT1 = 1 (12) 

with a and fl connected by the relation 

OO 

2fl2 = a f  ° f,2 d*/. (13) 

Following [1], equation (1) can be integrated twice to give 

f , =  ~f , /2(o3  _ f 3 / 2 )  (14) 

where 0 .2 =f(oo)  is some as yet unknown constant which depends on a and will be 
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determined by the integral condition (12). Equation (14) can be integrated once more to 
give f implicitly in terms of ~ as 

((f+ofl/2+o2)(___oo--ott/z)Z)+2v/~tan_l( 2Vc3a(fl/2--otl/2) ) 
log ( a  + oa  1/2 + 0 2 ) ( 0 - f l / 2 )  z 1 + ( 2 f  1/2 + o ) ( 2 a  x/2 + o )  

o 2 

- 2 7/. (15)  

To determine the relation between o and a it is easiest to use equation (14) directly in 
(12); this gives the equation 

(5o4) 
o 8 - ~-ao 6 + !~a5/2o3 - 40 + - ~ -  = 0. (16) 

On putting o = ~ta ~/z (a  > 0), equation (16) can be written as 

(Ix --  l ) 3 g ( b ~ )  --  40or - 4  = 0 ( 1 7 )  

where 

= + + + + + 

It is then easy to deduce, since g(/z) > 0 and g ' (u)  > 0 for all/z >/O, that equation (17) has 

Table 1. Values of o obtained by solving equation (16) compared with the asymptotic solution given by (19), and 
the corresponding values of/3 

From (16) From (19) fl 

0 1.58583 
0.5 1.68032 
1.0 1.78187 
1.5 1.88554 
2.0 1.98897 
2.5 2.09096 
3.0 2.19090 
3.5 2.28851 
4.0 2.38368 
4.5 2.47643 
5.0 2.56681 
6.0 2.74083 
7.0 2.90658 
8.0 3.06489 
9.0 3.21654 

10.0 3.36220 
12.0 3.63787 
15.0 4.01889 
20.0 4.58817 
25.0 5.09692 
30.0 5.56080 

2.61326 
2.77352 
2.93072 
3.08338 
3.23112 
3.37397 
3.64596 
4.02398 
4.59094 
5.09865 
5.56197 

0.00000 
0.51746 
0.77625 
0.99335 
1.18792 
1.36744 
1.53582 
1.69547 
1.84798 
1.99449 
2.13585 
2.40566 
2.66123 
2.90518 
3.13937 
3.36519 
3.79584 
4.39998 
5.32489 
6.17556 
6.97128 
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just one root in ~ > 0 and hence for a given value of a there corresponds a unique value of 
o. Thus ,to obtain a solution for a given value of a we first solve equation (16) to 
determine o and then use this value in either equation (14) or (15) to determine f .  The 
corresponding value of/3 given by equation (14) is then 

/3 = ~ _ , ~ / 2 ( o 3  _ , ? / 2 ) ,  (18) 

and it is straightforward to check that this is consistent with/3 as determined by (13). 
Equation (17) enables us to determine the solution for large a; we find that 

~ = 1 + 3 1 / 3 a - 4 / 3 + . . .  (19) 

from which it follows, from (15) or equation (14), that for a >> 1 

f =  a + 2.31/3(1 - e - ~ / 4 ) o t - 1 / 3  + . . . (20) 

where ~ = aT. 
Values of o obtained by solving equation (16) numerically using a Newton-Raphson 

method are given in Table 1 for a range of a. Also shown in this table are the 
corresponding values of /3 as given by (18) and the values of a calculated from the 
asymptotic expression (19). Graphs of f '  for various values of a obtained by solving 
equation (14) numerically using the appropriate value of a (as given in Table 1) are shown 
in Figure 1. 

s 

1 2 3 4 s ? 

Figure 1. Graphs of f '  for various values of a. 
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